Мощность насоса

Для чего необходимы расчеты

Большинство современных систем автономного обогрева, использующихся для поддержания определенной температуры в жилых помещениях, укомплектованы насосами центробежного типа, которые обеспечивают бесперебойную циркуляцию жидкости в отопительном контуре. Подробнее о насосах узнайте на сайте https://www.termoros.com/catalog/nasosy/.

За счет увеличения давления в системе можно снизить температуру воды на выходе отопительного котла, сократив тем самым суточный расход потребляемого им газа.

Правильный выбор модели циркуляционного насоса, позволяет на порядок повысить уровень эффективности работы оборудования в отопительный сезон и обеспечить комфортную температуру в помещениях любой площади.

Подбор циркуляционного насоса для системы отопления

Характеристики любого насоса

При выборе насосов технические характеристики можно условно разделить на ключевые и дополнительные. Для начала разберемся с перечнем основных параметров насосов, которые определяют работу насоса.

Производительность насоса – это количество кубометров или литров за час, которые может перекачать насос. Производительность насоса помогает определить, насколько эффективным будет агрегат для работы в определенных условиях.

Напор насосов – это техническая характеристика, которая обозначается в формулах в метрах. За счет нее вы можете определить, насколько высоко с помощью этого насоса можно поднять перекачиваемую жидкость. Если вам нужно поднимать жидкость из расположенного низко источника, либо транспортировать жидкость придется высоко, характеристики напора играют большую роль.

Мощность – это совокупность значений энергии, которая производится насосами за единицу времени.

Коэффициент полезного действия насоса – еще один важный параметр, который рассчитывают по двум показателям. Он означает отношение двух видом энергий насосов – полезной и потребляемой. КПД для удобства чаще переводят в проценты.

Для получения необходимых технических характеристик проводят замеры насоса. Для этого могут понадобиться манометр, дроссельная шайба. Для получения значения результативного параметра КПД потребуются просчеты производительности, мощности и напора.

Если вы не желаете использовать формулы, можно построить график работы насоса. В нем обозначают разные точки. Путем построения кривых на графике с возрастанием удастся проанализировать необходимые параметры. С помощью графика также можно установить плавность и бесперебойность работы конкретного насоса. Если график получается с плавным, постепенным возрастанием кривой, это означает отличные характеристики насоса. Хуже, когда кривая ступенчатая.

С построением кривой определяют рабочую характеристику насосов. Она определяет взаимоотношение между подачей оборудования и показателями напора. При пересечении этих двух характеристик обозначают на графике рабочую точку насоса.

Саму кривою делят на части – нисходящую и восходящую. Первый промежуток означает стабильную работу насоса, для восходящего участка кривой характерна неустойчивая работа с рисками срывов. Мощность холодного хода рассчитывают в момент отсутствия подачи жидкости для перекачивания. КПД в точке этого значения должен быть нулевым. Когда в насосе начинается подача воды, этот процесс сопровождается ростом показателя КПД. После достижения  коэффициентом полезного действия своего предела, начинается снижение показателя.

Что такое производительность насоса

Под производительностью насоса, она же подача или объемный расход, понимают объем жидкости, перекачиваемый оборудованием в единицу времени. Параметр обозначается буквой Q. Основные единицы измерения – м3/с, м3/ч, л/с, л/ч. Максимальное значение данной технической характеристики указывают на идентификационной табличке каждого насоса – шильде.

Производительность включает только объем реально перемещенной жидкости, обратные утечки не учитываются. Соотношение теоретического и реального расходов называют объемным КПД. У современного насосного оборудования уровень герметизации очень высок, поэтому реальная производительность практически равна теоретической.

Иногда вместо объемного расхода пользуются массовым. В этой ситуации величину подачи измеряют не объемом, а массой перемещаемой жидкости в единицу времени. Массовый расход обозначают буквой G.

Расчет КПД в насосе и двигателе

При техническом обслуживании специалист не сможет определить мощность, оставшийся срок службы подшипников насоса или двигателя с высокой степенью точности. Именно состояние этих деталей может стать причиной замены насоса или обслуживания. С другой стороны, в ходе использования насоса можно самостоятельно определить снижение мощности и сопутствующие неполадки. Объективно, если агрегат стал медленнее транспортировать жидкость из точки «А» в точку «Б», это говорит о необходимости замены двигателя или самого центробежного насоса.

Количественная оценка потери эффективности нужна в определенных ситуациях. Фактически можно количественно оценить существующий КПД насоса или двигателя и сравнить их с техническими особенностями оборудования.

В водяных насосах выделяют следующие виды КПД:

  1. Гидравлические. Они зависят от количества вращения лопастей насоса, выполняемых при перекачивании воды. Определяются потоком воды внутри насоса. Если гидравлический КПД превышает норму, насос будет хуже поднимать воду на высоту. Снижается напор насоса.
  2. Объемные. Это потенциальные утечки в насосе, которые снижают количество воды на моменте подачи жидкости в систему. Объемный КПД определяется делением фактического расхода, подаваемого насосом при заданном давлении, на его теоретический расход.
  3. Механические. Увеличивается из-за сильного трения внутри оборудования. Это может происходить из-за износа деталей, небольшого количества смазки, отсутствия жидкости. В результате существенно может снизиться мощность насоса. Определяется путем деления теоретического крутящего момента, необходимого для его привода, на фактический крутящий момент, необходимый для его приведения в действие. КПД 100%  означает следующее: если насос будет подавать поток при нулевом давлении, для его привода не потребуется сила или крутящий момент.

В целом, КПД зависит от исправности насоса, качества и состояния уплотнителей, затрачиваемой энергии на механическое трение. Без ссылки на теоретический расход фактический расход, измеренный расходомером, не имеет смысла.

КПД для промышленных насосов

Центробежный агрегат. КПД насоса зависит от порядка эксплуатации и особенностей конструкции. Чем больше мощность привода, чем выше коэффициент полезного действия.

Помпы с магнитной муфтой имеют примерно такой же КПД, как и у вышесказанных аппаратов. Имеет значение материал изготовления задней герметичной крышки, которая устанавливается между двумя магнитами – ведущим и ведомым. Если материал проводит ток – КПД существенно снижается.

Насос с магнитной муфтой
Насос с магнитной муфтой

Винтовое устройство несет большие механические потери в связи с трениями между ротором и стартером. КПД данные приборы имеют примерно 60 %.

Импеллерный насос способен очень аккуратно перекачивать воду. Несет высокие механические потери.

Импеллерная помпа
Импеллерная помпа

Мембранно – пневматический насос лишен двигателя. Его работа происходит за счет сжатого воздуха. КПД данного прибора полностью зависит от коэффициента полезного действия воздушного компрессора.

Мембранно – пневматическая помпа

Мембранно – пневматическая помпа
Мембранно – пневматическая помпаИсточник Мембранно – пневматический насос лишен двигателя. Его работа происходит за счет сжатого воздуха. КПД данного прибора полностью зависит от коэффициента полезного действия воздушного компрессора.

Как вычислить КПД насоса

Коэффициент полезного действия помпы – характеризует эффективность прибора. Это соотношение полезной энергии к затраченной.

Для определения КПД используется формула:

КПД = P2 / P1 * 100%

Р1 – гидравлическая мощность;

Р2 – затраченная.

Что нужно, чтоб вычислить коэффициент полезного действия:

  • Специальные устройства, имеющие токовые щипцы. Они определяют электрическую силу, которую потребляет мотор из сети.
  • Если между мотором и помпой есть механическая связь, то рассчитывается мощность, расходуемая насосом, как и мощность на валу насоса.
  • Вымеряем расход и вычисляем гидравлическую мощность.

В случае, если КПД оказывается ниже, насос подлежит ремонту или замене.

Полезная мощность

Полезная мощность (P полезн) — это мощность, передаваемая от насоса к жидкости. Как видно из следующей формулы, полезная мощность рассчитывается по подаче, напору и плотности.

Отдельная кривая полезной мощности обычно не приводится в заказных спецификациях, однако используется для расчета КПД насоса.

Давление насоса — описание давления насоса

Полное давление

Полное давление насоса рассчитывается как сумма трех составляющих:

Статическое давление

Статическое давление может быть измерено непосредственно с помощью датчика дифференциального давления, или можно установить датчики давления на входе и выходе насоса. В этом случае статическое давление может быть найдено по формуле:

Динамическое давление

Динамическое давление (разность динамических давлений между входом и выходом насоса) определяется по следующей формуле:

На практике при испытаниях насоса измерение динамического давления и скорости потока на входе и выходе насоса не производится. Вместо этого динамическое давление определяется расчетным методом на основе расхода жидкости и диаметра трубы на входе и выходе насоса:

Как следует из формулы, динамическое давление равно нулю, если диаметры трубы до и после насоса одинаковы.

Разность барометрических давлений

Разность барометрических давлений в точках установки датчиков давления на входе и выходе насоса может быть определена следующим образом:

где:

Δz — разность высот между точками установки манометра, соединенного с трубой на выходе, и манометра, соединенного с трубой на входе.

Разность барометрических давлений имеет значение, только если Δz не равно нулю. Таким образом, положение отводов давления на трубе не имеет значения при определении разности барометрических давлений.

Если для измерения статического давления используется дифференциальный манометр, то разность барометрических давлений принимается равной нулю.

NPSH — допускаемый кавитационный запас

Кавитацией называется процесс образования пузырьков пара в областях, где локальное давление падает до значения давления насыщенного пара. Степень кавитации зависит от того, насколько низким будет давление в насосе. При кавитации происходит снижение напора и появление шума и вибрации.

Кавитация вначале возникает в областях наименьшего давления в насосе, чаще всего образуются на кромках лопаток на входе в рабочее колесо, см. рисунок 2.10.

Кавитация

Значение NPSH — абсолютное и всегда положительное. NPSH измеряется в метрах, как напор, см. рисунок 2.11. Так как NPSH измеряется в метрах, нет необходимости учитывать плотность различных жидкостей.

Существуют два различных значения NPSH: NPSHR и NPSHA.

NPSHA обозначает имеющийся NPSH и определяет, насколько близко к парообразованию находится жидкость во всасывающем трубопроводе. NPSHA определяется по формуле:

Кривая NPSH

NPSHR обозначает требуемый NPSH и выражает наименьшее значение NPSH, требуемое для приемлемой работы насоса. Абсолютное давление на входе может быть рассчитано по заданному значению NPSHR и давлению насыщенных паров жидкости путем подстановки в формулу (2.16) NPSHR вместо NPSHA.

Чтобы определить, может ли насос быть безопасно установлен в систему, следует найти NPSHA и NPSHR для наибольших значений подачи и температуры в пределах рабочего диапазона.

Рекомендуется добавить минимальный запас безопасности 0,5 м. В зависимости от применения может понадобиться больший запас безопасности. Например, для применений, чувствительных к шуму, или для мощных насосов, таких как питательные насосы котлов, европейская ассоциация производителей насосов рекомендует применять к значению NPSH3% коэффициент безопасности SA=1,2 — 2,0.

Риск кавитации в системах может быть снижен или исключен с помощью следующих мер:

  • установка насоса ниже по отношению к уровню жидкости в открытых системах;
  • повышение давления в закрытых системах;
  • уменьшение длины линии всасывания для снижения потерь на трение;
  • увеличение площади поперечного сечения всасывающего трубопровода для снижения скорости движения жидкости и, как следствие, уменьшения потерь на трение;
  • исключение локальных падений давления, возникающих вследствие изгибов и других препятствий во всасывающем трубопроводе;
  • снижение температуры жидкости для уменьшения давления паров.

Следующие два примера показывают, как рассчитывается NPSH.

Пример 2.1 Насос для подачи жидкости из колодца

Насос должен подавать жидкость из резервуара, уровень воды в котором на 3 метра ниже уровня насоса. Для расчета значения NPSHA необходимо знать потери на трение во всасывающем трубопроводе, температуру воды и барометрическое давление, см. рисунок 2.12.

Схема работы насоса при подаче жидкости из колодца

Температура воды 40°C

Барометрическое давление 101,3 кПа.

Потери давления во всасывающем трубопроводе при существующей подаче 3,5 кПа.

При температуре воды 40°C давление паров равно 7,37 кПа, а ρ равно 992,2 кг/м3.

Значения взяты из таблицы «Физические свойства воды» в конце статьи.

Для этой системы выражение NPSHA в формуле (2.16) может быть записано в следующем виде:

Hвсас— уровень воды относительно насоса. Hвсас может быть выше или ниже насоса и выражается в метрах. В этой системе уровень воды находится ниже насоса. Таким образом, Hвсас отрицательно, Hвсас = –3 м.
Значение NPSHA для системы:

Насос, предназначенный для работы в рассматриваемой системе, должен иметь значение NPSHR меньше, чем 6,3 м минус запас безопасности 0,5 м. Таким образом, при существующей подаче для насоса требуется значение NPSHR меньшее, чем 6,3 – 0,5 = 5,8 м.

Пример 2.2 Насос в закрытой системе

В закрытой системе отсутствует свободная поверхность воды для использования в качестве плоскости отсчета. Этот пример показывает, как датчик давления, расположенный выше плоскости отсчета, может использоваться для определения абсолютного давления в линии всасывания, см. рисунок 2.13.

Схема закрытой системы

Измеренное относительное статическое давление на стороне всасывания pстат.вх = -27.9 кПа. Таким образом, в точке установки манометра имеется отрицательное давление. Манометр установлен выше насоса. Следовательно, разность между высотой манометра и высотой входа в рабочее колесо имеет положительное значение Hвсас = +3 м. Скорость в трубе, где измеряется давление, создает дополнительное динамическое давление 500 Па.

Барометрическое давление 101 кПа.

Рассчитанные потери на трение в трубах между точкой измерения (pстат.вх.) и насосом Hпотерь труб. = 1м.

Температура системы 80°C.

Давление паров pн.п. = 47.4 кПа, плотность ρ = 973 кг/м3, значения взяты из таблицы «Физические свойства воды».

Для этой системы формула 2.16 для NPSHA имеет следующий вид:

Несмотря на отрицательное давление в системе, значение NPSHA для существующего расхода превышает 4 м.

Осевая нагрузка

Осевая нагрузка является суммой сил, действующих на вал в осевом направлении, см. рисунок 2.14. Осевая нагрузка в основном возникает вследствие разности давлений на переднем и заднем диске рабочего колеса.

Значение и направление осевой нагрузки может использоваться для определения типоразмера подшипников и конструкции электродвигателя. Насосы с нагрузкой, направленной вверх, требуют применения фиксированных подшипников. Дополнительно к осевой нагрузке необходимо учесть силы, действующие на вал вследствие давления в системе. Пример кривой осевой нагрузки представлен на рисунке 2.15.

Радиальнаянагрузка на подшипник

Осевая нагрузка связана с напором и поэтому пропорциональна квадрату скорости.

Расчет необходимой мощности (высоты) напора

Мощность отопительного котла и производительность насоса известны, следующим шагом будет определение напора теплоносителя, достаточного для преодоления внутреннего гидравлического сопротивления труб и элементов отопительной системы.

Для этого берутся в расчет тепловые потери на самом протяженном отрезке контура — от источника тепла до дальнего радиатора. Чтобы доставить тепло в любую его точку, мощность напора подаваемой жидкости должна быть выше суммарного гидравлического сопротивления всех отопительных приборов.

Расчет напора насоса отопления производится по следующей формуле:

Hpu = R × L × ZF ÷ 10000

Обозначение Параметр Единицы измерения
Hpu Мощность (высота) напора м
R Потери в трубах подачи и «обратки» Па/м
L Протяженность отопительного контура м
ZF коэффициент гидравл. сопротивления фасонной и запорной арматуры системы

В зависимости от диаметра труб, значение параметра R находятся в диапазоне 50–150 Па/м (минимальный показатель применим для водопроводных систем с диаметром трубы от 2-х дюймов и выше, для современных пластиковых и металлических труб потери составляют 150 Па/м). Для нашего помещения необходимо использовать максимальное значение.

Если точную длину контура (L) определить сложно, этот параметр рассчитывают, исходя из габаритов отапливаемого помещения. Показатели длины, ширины и высоты дома складываются, а затем удваиваются. При общей площади 300 м² можно предположить, что длина дома составляет 30 м, ширина – 10 м, а высота 2,5 м. В этом случае L = (30 + 10 + 2,5) × 2, то есть 85 метров.

Самый простой вариант определения значения ZF выглядит следующим образом: при отсутствии термостатического вентиля в системе он равен 1,3, а при его наличии — 2,2.

Для расчета возьмем максимальную величину этого коэффициента и подставим все полученные значения в формулу:

150 × 85 × 2,2 ÷ 10000 = 2,8 м.

Предложенная методика расчета не является единственной. Для более точного определения напорных показателей насоса существуют формулы, в которых учитывается не коэффициент потерь, а реальные значения этих показателей.

Как подобрать циркуляционный насос для системы отопления - расчет ...

Гидравлическое сопротивление

Этим термином выражаются суммарные потери давления в системе. Отопительный контур состоит из отдельных элементов, каждый из которых имеет свое значение этой характеристики.

К ним можно отнести:

  • вентили;
  • клапаны;
  • фильтры;
  • измерительные и регулирующие приборы;
  • радиаторы;
  • конвекторы и т. д.

Для точного определения потерь в системе обычно пользуются значениями, указанными в технической документации на каждый компонент отопительного контура.

Если же такой возможности нет, найти эту информацию можно в следующей таблице:

Элемент системы Потери давления Единицы измерения
Котел 1000 – 5000 Па
Компактный котел 5000 – 15000 Па
Теплообменник 10000 – 20000 Па
Тепломер 15000 – 20000 Па
Водонагреватель 2000 – 10000 Па
Тепловой насос 10000 – 20000 Па
Радиатор 500 Па
Конвектор 2000 – 20000 Па
Радиаторный вентиль 10000 Па
Регулирующий клапан 10000 – 20000 Па
Обратный клапан 5000 – 10000 Па
Фильтр (чистый) 15000 – 20000 Па
Термостатический вентиль 5000 – 10000 Па
Смеситель 2000 — 4000 Па

В этом случае для расчета высоты напора удобно воспользоваться несколько иной формулой.

H = 1,3 × (R1L1 + R2L2 + Z1 + Z2 + …. + Zn) ÷ 10000, где:

  • R1, R2 – потери в трубах подачи и «обратки» (Па/м);
  • L1, L2 – длина линий трубопровода подачи и «обратки» (м);
  • Z1, Z2 … Zn – потери давления на отдельных элементах системы (Па).

Число, находящееся в знаменателе формулы (10000), – коэффициент пересчета Паскалей в метры.

Циркуляционный насос в системе отопления | Ликбезы

Расчет производительности, взаимосвязь с типом насоса

Конструкция и принцип действия насоса влияют на характеристику производительности и способ расчета. На величине параметра отражаются частота оборотов или тактов, свойства жидкости, характеристики трубопровода. При самовсасывании, увеличении плотности и вязкости жидкости подача снижается.

Центробежные

Центробежные насосы показывают высокую производительность, отличаются равномерностью подачи, однако показатели резко снижаются с возрастанием напора. По величине напора модели центробежного типа уступают оборудованию с мембранной, винтовой или импеллерной конструкцией.

С ростом производительности растет потребляемая мощность, а КПД проходит через максимальное значение и начинает уменьшаться. Наиболее благоприятный эксплуатационный режим при заданной частоте оборотов достигается при максимальном КПД.

Зависимость напора, потребляемой мощности и КПД от производительности при постоянной частоте оборотов отражается в универсальной характеристике. Показатели зависимости получают при проведении контрольных испытаний.

Насосы центробежного типа с несколькими колесами на одном валу называют многоступенчатыми. Жидкость поочередно перемещается через каждое из колес. При одинаковом с одноступенчатым насосом объемном расходе у многоступенчатого устройства напор будет больше.

Способы регулирования подачи:

  • Изменение частоты оборотов рабочего колеса. С уменьшением частоты оборотов колеса снижается производительность насоса. Данный способ регулировки наиболее эффективен с энергетической точки зрения, поскольку со снижением подачи сокращается напор насоса, соответственно, уменьшается потребление электроэнергии. До сравнительно недавнего времени широкому применению рассматриваемого способа мешала высокая стоимость преобразователей частоты. Сегодня промышленность массово выпускает преобразователи частоты надлежащего качества, произошло снижение цен, что сказалось на изменении ситуации в пользу подобного способа регулировки.
  • Смена положения задвижки на напорном трубопроводе. Изменение производительности достигается за счет регулирования задвижкой гидравлического сопротивления в трубопроводной системе. Чем сильнее открыта задвижка, тем выше подача. Этот способ проще, чем изменение частоты оборотов, но более затратен с точки зрения энергопотребления. При снижении производительности положением задвижки уменьшается КПД, а напор возрастает. Явление сопровождается бесполезным расходом энергии.
  • Байпасирование. Производительность регулируют байпасом – обходным путем с задвижкой для отвода части жидкости из напорного трубопровода во всасывающий. Подачу изменяют положением задвижки. Величину изменения можно определить по разнице показаний двух дифманометров, установленных перед и после байпаса. При открытии задвижки байпаса возрастает производительность и потребляемая мощность, а КПД снижается. По этой причине данный способ регулировки подачи энергетически менее эффективен по сравнению с изменением частоты оборотов колеса.

Объемный расход устройств центробежного типа определяют по формуле:

  • Q – производительность, м³/с
  • b1, b2 – ширина колеса на внутренней и внешней окружности, м
  • D1, D2 – внешний диаметр впускного отверстия и колеса, м
  • σ – толщина лопаток, м
  • z – количество лопаток
  • c1, c2 – радиальные составляющие абсолютной скорости на входе и выходе из колеса, м/с

Мембранные

Агрегаты мембранного типа обеспечивают высокий напор в нагнетательной линии, при этом величина напора практически не сказывается на производительности. Ввиду инерционности движения мембранные устройства работают с малой частотой, что выливается в низкую подачу.

Винтовые

В винтовых насосах жидкость перекачивается вращением одного или нескольких сцепленных винтов. Профиль винтов позволяет герметично изолировать нагнетающую область от всасывающей.

При вращении винтов во впадинах между корпусом и винтом создаются заполненные жидкостью зоны замкнутого пространства. Жидкая среда постепенно перемещается вдоль винтовой оси в сторону нагнетающей области.

Вращательное движение винтовых насосов в отличие от мембранных не затруднено инерцией. Оборудование подобного типа может работать с высокой частотой и демонстрировать производительность, сравнимую с моделями с центробежным принципом действия, прежде всего многоступенчатыми со средними значениями подачи.

Производительность насосных агрегатов с винтовой конструкцией увеличивается с ростом частоты оборотов, при этом напор не изменяется. У многовинтовых моделей размер подачи выше, чем у одновинтовых.

Подачу насоса с одним винтом вычисляют по формуле:

  • Q – производительность, м³/с
  • ε – эксцентриситет, м
  • D – диаметр винта, м
  • Т – шаг винтовой поверхности статора, м
  • n – частота вращения ротора, сек−1
  • ηV – объемный КПД

Импеллерные

Производительность импеллерного насоса напрямую зависит от частоты оборотов вала электрического двигателя. По этой причине оборудование применимо для использования в качестве насоса-дозатора.

В моделях с импеллерным устройством сочетаются достоинства агрегатов с центробежным принципом действия и объемного типа. Остается достижимым высокий уровень напора и подачи, одновременно сохраняется возможность перекачки густых жидкостей с сильной вязкостью.

Насосы-дозаторы

Объемный расход насосов-дозаторов регулируют жестче по сравнению с остальными типами насосов, поскольку основное требование к дозирующему оборудованию – точность дозировки перемещаемой жидкости.

Способы регулировки:

  • Ручное управление. Значение подачи выставляется поворотом ручки настройки.
  • Сервопривод. Ход насоса ограничен до нужной величины, дозирование совершается автоматически. При отключении электроэнергии допускается настройка в ручном режиме.
  • Частотный преобразователь. Настройка осуществляется через электронный блок управления с дисплеем. Возможна ручная настройка.

Среди разных типов насосов-дозаторов по уровню производительности и напора первенство принадлежит электромеханическим устройствам, на втором месте электромагнитные, замыкают ряд агрегаты с перистальтическим принципом действия.

Обзор насосов

Насосы бывают промышленные и бытовые. В основу работу положен одинаковый принцип, разница только в размерах и индивидуальных параметрах. Нужный агрегат подбирается в зависимости от типа выполняемой работы. Рассмотрим типы устройств и их разновидности.

Виды насосов
Виды насосов

Поверхностные насосы

Такие устройства не погружаются в воду, а находятся над или под ее поверхностью. Забор воды происходит посредством всасывания через магистраль. Такие машины применяются для водоснабжения жилых домов, коттеджей, мест, где отрезок до зеркала воды небольшое.

Модели поверхностных насосов с подробными характеристиками можно найти тут .

Бывают  двух видов:

  • Вихревые – имеют небольшую глубину всасывания. Большинство видов применяются для повышения давления воды, которая поступает из системы или резервуара. Также, существуют конструкции, которые используются для забора воды с небольшой глубины, до 9 метров. Для удобств эксплуатации такие устройства устанавливаются в паре с автоматикой. Благодаря системе автоматики и гидроаккумулятора, появилась возможность получать воду, просто открыв кран. Автоматика следит за наполнением резервуара (гидроаккумулятора) и подкачивает воду в него, когда давление снижается до установленного значения.

Поверхностный вихревой насос в разрезе. У центробежного аппарата такая же конструкция, отличие в том, что используется два и более колеса забора воды
Поверхностный вихревой насос в разрезе. У центробежного аппарата такая же конструкция, отличие в том, что используется два и более колеса забора водыИсточник https://nnnn.su

Центробежные – практически ничем не отличаются. Они имеют аналогичную конструкцию. Разница состоит в количестве составных частей: у вихревого устройства – одно колесо, а у центробежного может быть два и больше колеса забора воды. От количества колёс зависит мощность напора. Выдача составляет от трех до девяти кубических метров в час.

Центробежный насос устройство и принцип работы:

Колодезные насосы

Такие машины имеют нижний забор воды. Конструкция позволяет работать полностью погружая устройство в воду. Охлаждение осуществляется благодаря температуре перекачиваемой жидкости. В конструкции применено оригинальное решение – автоматический выключатель, который отключает питание при падении уровня воды. Выключатель работает по принципу поплавка. Аппарат дает от трёх до семи кубов воды в час, напор от 10 до 30 метров.

Колодезный насос. Имеет нижний забор воды и автоматический выключатель (защита от сухого хода)
Колодезный насос. Имеет нижний забор воды и автоматический выключатель (защита от сухого хода)

Размер скважинных агрегатов в диаметре составляет от 75мм до 250мм, благодаря этому размеру, не составляет труда опустить аппарат в обсадную трубу скважины. Они подходят для подачи слегка загрязнённой воды с примесями. Благодаря хорошей производительности насосы получили достаточно широкое применение в быту. Устанавливаются в комплекте с автоматикой и гидроаккумулятором. Используют для обеспечения водой жилых домов.

Пример применения скважинного аппарата.
Пример применения скважинного аппарата.

Дренажные насосы

Погружной тип, предназначенный для работы с загрязнённой водой. Такими устройствами откачивают загрязнённую воду с котлованов, подвалов, бассейнов, искусственных водоёмов. Устройства малогабаритные, производительность насосов колеблется от 10 до 100 кубических метров в час, в зависимости от производителя и назначения.

 Дренажный насос. Конструктивные характеристики
Дренажный насос. Конструктивные характеристики

Разновидностью дренажных устройств выступают фекальные. Отличие их в том, что фекальный может перекачивать жидкость, содержащую более крупные частицы, используются для перекачивания канализационных и сточных вод.

Шестерёнчатый насос

Шестерёнчатый, как его ещё называют шестерённый — это агрегат объёмного типа. Хорошо себя зарекомендовал при работе с вязкими продуктами, такие как различные типы масла, нефтепродукты. Существует два типа: с внутренним зацеплением и внешним. Проводя расчет производительности насоса шестерёнчатого типа, необходимо учитывать то, что она зависит от конструкции машины и его размеров, косозубые шестерни обеспечивают более плавный поток жидкости, чем прямозубые.

Чтобы узнать производительность насоса формула следующая:

Q = 2·f·z·n·b·ηV

  • Q – производительность шестеренчатого насоса, м3/с;
  • f – площадь поперечного сечения пространства между соседними зубьями, м2;
  • z – число зубьев;
  • b – длинна зуба, м;
  • n – частота вращения зубьев, сек-1;
  • ηV – объемный коэффициент полезного действия.

Наибольшее применение получила косозубая конструкция шевронных шестерён. Коэффициент полезного действия не превышает 70%.

Шестерённый насос — устройство, принцип работы, применение:

Циркуляционный насос

Для поддержания правильного режима работы теплоносителя, для циркуляции воды в системе отопления применяют циркуляционные насосы. Основной особенностью является размер. Они очень компактны и размещаются, прямо на магистральной трубе системы отопления. Благодаря устройству достигается равномерная температура по всей системе отопления. В них есть встроенный режим регулировки производительности.

Характеристики циркуляционных аппаратов
Характеристики циркуляционных аппаратовИсточник http://byreniepro.ru

Регулировка производительности

В ходе работы насосов возникает необходимость менять параметры производительности. Такая потребность возникает на насосных станциях городских и муниципальных водоснабжений, в сельском хозяйстве, в котельных и на теплоэлектростанциях. Регулировка производительности необходима для ограничений или увеличений объемов подачи в соответствии с нуждами. Для регулировки производительности насосов существует несколько способов.

Дросселирование

Этот метод применяется для увеличения энергопотребления и снижения общего КПД системы. Работа метода состоит в установке задвижки на трубопроводе, подающем напор. Задвижки бывают ручными и автоматическими и работают в различных режимах. Задвижку можно прикрывать для снижения расхода и увеличения гидравлического сопротивления сети. Такое действие вызовет снижение подачи и увеличение напора.

Байпасирование

Байпасирование (или перепуск) – это метод регулировки производительности, подходящий для автоматических систем отопления. В случае, если необходима ручная регулировка, вместо клапана устанавливается задвижка.
Суть метода состоит в установки перемычки с клапаном между напорным и всасывающим трубопроводами. Такое действие помогает сохранять постоянную величину перепада давления, что приводит к регулированию напора. Когда давление падает – напор увеличивается, клапан открывается и излишки воды возвращаются в зону всасывания из напорного трубопровода.
По этой причине насос эксплуатируется в зоне оптимального коэффициента полезного действия с постоянными параметрами расхода и напора жидкости.

Обточка рабочего колеса

Как мы уже упоминали, на величину подачи в центробежных насосах влияет рабочее колесо и его диаметр.

Поэтому, при обточки (уменьшении) диаметра производительность падает вместе с напором. Производить обточки следует в соответствии с допустимой нормой (количественной и величинной). Найти соответствующую информацию можно в нормативных документах на группу насосов.

Изменение частоты вращения рабочего колеса

Оптимальным вариантом регулировки производительности считается изменение числа оборотов вала приводного электродвигателя. К плюсам метода относят:

  • Энергоэффективность
  • Возможность эксплуатации насоса при максимальных КПД
  • Автоматическое поддержание напора или производительности в необходимых пределах
  • Комфортное изменение параметров в соответствии с потребностями системы

Пример расчета

Основные необходимые данные для выбора подходящей модели поверхностного насоса для водоснабжения дома:

Схема для расчета технических характеристик и подбора подходящего насоса для водоснабжения частного дома

  • Максимальное значение расхода жидкости в л/мин или м³/ч.
  • Высота всасывания — разность уровней впускного патрубка насоса и поверхности воды в источнике.
  • Высота нагнетания — разность уровней наивысшей точки трубопровода и выпускного патрубка насоса.
  • Начальное давление, для безнапорной скважины или колодца равное атмосферному.
  • Конечное — требуемое давление в домашней системе водопровода.
  • Потери давления в трубопроводах зависят от расхода жидкости и качества поверхностей внутренних стенок трубопроводов, создающих трение ее движению.

Высота всасывания гидронасосов поверхностного типа не может превышать 10,33 м — высоты водяного столба, создающего равное атмосферному давление.

Для упрощения расчетов ее округляют до 10 м, а создаваемое давление приравнивают одной технической атмосфере, 1 ат = 1 кГс/см², или примерно 1 бару ~ 0,98 ат.

Высота нагнетания, или напор, определяется техническими параметрами и мощностью агрегата.

Часто значение напора путают с давлением, называя одно другим. Эти величины эквивалентны, но в точности не равны друг другу. Давление на выходе насоса зависит только от его технических характеристик, а напор — от совокупности внешних условий: скорости потока и расхода жидкости, ее температуры, высоты над уровнем моря и пр.

При расчете все величины давлений системы в паскалях, барах, атмосферах и других единицах приводят к эквивалентным значениям напора в метрах.

Приведем пример, приняв геодезический уровень размещения насосной станции за нулевой:

  • Расход жидкости, обеспечиваемый гидронасосом — 40 м³/ч. Это вполне достаточное значение потребления для нужд домашнего хозяйства.
  • Уровень воды в колодце ниже нулевого на 4 м.
  • Верхняя точка подъема воды на 15 м выше его.
  • Суммарные потери во впускном и выходном трубопроводах можно найти в таблицах для конкретного типа труб, но обычно их рассчитывают исходя из того, что на каждых 10 м трубопровода теряется 1 м напора, потому примем их равными (15 м + 4 м) / 10 = 1,9 м.
  • Конечное давление в верхней точке примем равным 1 бару ~ 9,87 м.

Суммарный напор гидронасоса будет равен:

4 м + 15 м + 1,9 + 9,87 = 30, 77 м.[/attention]

Если водонасосная станция устанавливается не в расположенном рядом с колодцем кессоне, а в доме, следует также учесть потери напора на длине подводящего трубопровода.

Для каждого насоса существует эксплуатационная характеристика, показывающая падение напора в зависимости от расхода и имеющая примерно такой вид:

Схема падения напора в насосах для водоснабжения частного дома

Выбирая конкретную модель насоса, следует сообразовывать расчетные величины параметров с паспортными значениями для выбранного экземпляра агрегата в требуемой рабочей точке.

Гидравлическую мощность насоса можно найти по эмпирической формуле:

Р (Вт) = 2,725 x Расход (м³/ч) x Напор (м).

Для нашего примера получим: 2,725 x 40 x 30,77 = 3,354 кВт.

Подробнее о расчете и подборе насоса для водоснабжения загородного дома смотрите в этом видео:

Оцените статью
( Пока оценок нет )
админ
Строительство, ремонт и благоустройство своими руками!
Мощность насоса
Отделка балконов пвх-панелями: виды, преимущества и расчет
WordPress Themes