Температура кипения и плавления металлов, температура плавления стали — таблицы

Что такое температура плавления

Каждый металл имеет неповторимые свойства, и в этот список входит температура плавления. При плавке металл уходит из одного состояния в другое, а именно из твёрдого превращается в жидкое. Чтобы сплавить металл, нужно приблизить к нему тепло и нагреть до необходимой температуры – этот процесс и называется температурой плавления. В момент, когда температура доходит до нужной отметки, он ещё может пребывать в твёрдом состоянии. Если продолжать воздействие – металл или сплав начнет плавиться.

Плавление и кипение – это не одно и то же. Точкой перехода вещества из твердого состояния в жидкое, зачастую называют температуру плавления металла. В расплавленном состоянии у молекул нет определенного расположения, но притяжение сдерживает их рядом, в жидком виде кристаллическое тело оставляет объем, но форма теряется.

При кипении объем теряется, молекулы между собой очень слабо взаимодействуют, движутся хаотично в разных направлениях, совершают отрыв от поверхности. Температура кипения – это процесс, при котором давление металлического пара приравнивается к давлению внешней среды.

Для того, чтобы упростить разницу между критическими точками нагрева мы подготовили для вас простую таблицу:

Свойство Температура плавки Температура кипения
Физическое состояние Сплав переходит в расплав, разрушается кристаллическая структура, проходит зернистость Переходит в состояние газа, некоторые молекулы могут улетать за пределы расплава
Фазовый переход Равновесие между твердым состоянием и жидким Равновесие давления между парами металла и воздухом
Влияние внешнего давления Нет изменений Изменения есть, температура уменьшается при разряжении

Разница между температурой плавления и кипения

Температурой плавления металлов называют точку перехода твердокристаллического вещества в жидкое состояние. В составе расплава у молекул нет собственного места расположения, они удерживаются за счет силы притяжения, поэтому в разжиженном состоянии сохраняется объем, но теряется форма.

В процессе кипения происходит потеря молекулярного объема, а молекулы вяло взаимодействуют друг с другом, двигаясь хаотично в разных направлениях, отставая от поверхности. Температурой кипения называется процесс, при котором уровень давления металлического пара уравновешивается с давлением внешней среды.

Температура кипения и плавления металлов

В таблице представлена температура плавления металлов tпл, их температура кипения tк при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.

Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.

По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у ртути до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.

Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.

Самая маленькая температура плавления металла

Приведем примеры температуры плавления металлов, широко применяемых в промышленности и в быту:

  • температура плавления алюминия 660,32 °С;
  • температура плавления меди 1084,62 °С;
  • температура плавления свинца 327,46 °С;
  • температура плавления золота 1064,18 °С;
  • температура плавления олова 231,93 °С;
  • температура плавления серебра 961,78 °С;
  • температура плавления ртути -38,83°С.

Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.

Плотность металлов в таблице находится в диапазоне от 0,534 до 22,59 г/см 3 , то есть самым легким металлом является литий, а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем плотность урана и даже плутония при комнатной температуре.

Теплопроводность металлов в таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.

Предсказание температуры плавления (критерий Линдемана)

Попытка предсказать точку плавления кристаллических материалов была предпринята в 1910 году Фредериком Линдеманом ( англ. ) [6] . Идея заключалась в наблюдении того, что средняя амплитуда тепловых колебаний увеличивается с увеличением температуры. Плавление начинается тогда, когда амплитуда колебаний становится достаточно большой для того, чтобы соседние атомы начали частично занимать одно и то же пространство.

Критерий Линдемана утверждает, что плавление ожидается, когда среднеквадратическое значение амплитуды колебаний превышает пороговую величину.

Температура плавления кристаллов достаточно хорошо описывается формулой Линдемана [7]:

Tλ=xm29ℏ2MkBθrs2{displaystyle T_{lambda }={frac {x_{m}^{2}}{9hbar ^{2}}}Mk_{B}theta r_{s}^{2}}

где rs{displaystyle r_{s}}
 — средний радиус элементарной ячейки, θ{displaystyle theta }
 — температура Дебая, а параметр xm{displaystyle x_{m}}
для большинства материалов меняется в интервале 0,15-0,3.

Температура плавления — расчёт

Формула Линдемана выполняла функцию теоретического обоснования плавления в течение почти ста лет, но развития не имела из-за низкой точности.

Расчёт температуры плавления металлов

В 1999 году профессором Владимирского государственного университета И. В. Гаврилиным было получено новое выражение для расчёта температуры плавления:

Tпл=ΔHпл1,5N0k{displaystyle mathrm {T} _{text{пл}}={frac {Delta mathrm {H} _{text{пл}}}{1,5mathrm {N} _{0}k}}}

где Tпл{displaystyle mathrm {T} _{text{пл}}}
 — температура плавления, ΔHпл{displaystyle Delta mathrm {H} _{text{пл}}}
 — скрытая теплота плавления, N0{displaystyle mathrm {N} _{0}}
 — число Авогадро, k{displaystyle k}
 — константа Больцмана.

Впервые получено исключительно компактное выражение для расчёта температуры плавления металлов, связывающее эту температуру с известными физическими константами: скрытой теплотой плавления, числом Авогадро и константой Больцмана.

Формула выведена как одно из следствий новой теории плавления и кристаллизации, опубликованной в 2000 г. [8] Точность расчетов по формуле Гаврилина можно оценить по данным таблицы.

Температура плавления некоторых металлов

Металл Скрытая теплота плавления ΔHпл{displaystyle Delta mathrm {H} _{text{пл}}}, ккал*моль−1Температура плавления Tпл{displaystyle mathrm {T} _{text{пл}}}, K

расчётная экспериментальная
Al{displaystyle {ce {Al}}} 2,58 876 933
V{displaystyle {ce {V}}} 5,51 1857 2180
Mn{displaystyle {ce {Mn}}} 3,50 1179 1517
Fe{displaystyle {ce {Fe}}} 4,40 1428 1811
Ni{displaystyle {ce {Ni}}} 4,18 1406 1728
Cu{displaystyle {ce {Cu}}} 3,12 1051 1357
Zn{displaystyle {ce {Zn}}} 1.73 583 692
Sn{displaystyle {ce {Sn}}} 1,72 529 505
Mo{displaystyle {ce {Mo}}} 8.74 2945 2890

По этим данным, точность расчетов Tпл{displaystyle mathrm {T} _{text{пл}}}
меняется от 2 до 30 %, что в расчетах такого рода вполне приемлемо.

От чего зависит температура плавления

Для разных веществ температура, при которой полностью перестраивается структура до жидкого состояния – разная. Если взять во внимание металлы и сплавы, то стоит подметить такие моменты:

  1. В чистом виде не часто можно встретить металлы. Температура напрямую зависит от его состава. В качестве примера укажем олово, к которому могут добавлять другие вещества (например, серебро). Примеси позволяют делать материал более либо менее устойчивым к нагреву.
  2. Бывают сплавы, которые благодаря своему химическому составу могут переходить в жидкое состояние при температуре свыше ста пятидесяти градусов. Также бывают сплавы, которые могут «держаться» при нагреве до трех тысяч градусов и выше. С учетом того, что при изменении кристаллической решетки меняются физические и механические качества, а условия эксплуатации могут определяться температурой нагрева. Стоит отметить, что точка плавления металла — важное свойство вещества. Пример этому – авиационное оборудование.

Термообработка, в большинстве случаев, почти не изменяет устойчивость к нагреву. Единственно верным способом увеличения устойчивости к нагреванию можно назвать внесение изменений в химический состав, для этого и проводят легирование стали.

Процесс плавления металла

Плавление металла
Данный процесс обозначает собой переход вещества из твердого состояния в жидкое. При достижении точки плавления металл может находиться как в твердом, так и в жидком состоянии, дальнейшее возрастание приведет к полному переходу материала в жидкость.

То же самое происходит и при застывании — при достижении границы плавления вещество начнет переходить из жидкого состояния в твердое, и температура не изменится до полной кристаллизации.

При этом следует помнить, что данное правило применимо только для чистого металла. Сплавы не имеют четкой границы температур и совершают переход состояний в некотором диапазоне:

  1. Солидус — линия температуры, при которой начинает плавиться самый легкоплавкий компонент сплава.
  2. Ликвидус — окончательная точка плавления всех компонентов, ниже которой начинают появляться первые кристаллы сплава.

Точно измерить температуру плавления таких веществ невозможно, точкой перехода состояний указывается числовой промежуток.

В зависимости от температуры, при которой начинается плавление металлов, их принято разделять на:

  • Легкоплавкие, до 600 °C. К ним относятся олово, цинк, свинец и другие.
  • Среднеплавкие, до 1600 °C. Большинство распространенных сплавов, и такие металлы как золото, серебро, медь, железо, алюминий.
  • Тугоплавкие, свыше 1600 °C. Титан, молибден, вольфрам, хром.

Также существует и температура кипения — точка, при достижении которой расплавленный металл начнет переход в газообразное состояние. Это очень высокая температура, как правило, в 2 раза превышающая точку расплава.

Влияние давления

Давление при плавлении
Температура плавления и равная ей температура затвердевания зависят от давления, возрастая с его повышением. Это обусловлено тем, что при повышении давления атомы сближаются между собой, а для разрушения кристаллической решетки их нужно отдалить. При повышенном давлении требуется большая энергия теплового движения и соответствующая ей температура плавления увеличивается.

Существуют исключения, когда температура, необходимая для перехода в жидкое состояние, при повышенном давлении уменьшается. К таким веществам относят лёд, висмут, германий и сурьма.

Кристаллические решетки металла

В идеальном виде принято считать, что металлам свойственна кубическая решетка (в реальном веществе могут быть изъяны). Между молекулами имеются равные расстояния по горизонтали и вертикали.

Твердое вещество характеризуется постоянством:

  • формы, предмет сохраняет линейные размеры в разных условиях;
  • объема, предмет не изменяет занимаемое количество вещества;
  • массы, количество вещества, выраженное в граммах (килограммах, тоннах);
  • плотности, в единице объема содержится постоянная масса.

При переходе в жидкое состояние, достигнув определенной температуры, кристаллические решетки разрушаются. Теперь нельзя говорить о постоянстве формы. Жидкость будет принимать ту форму, в какую ее зальют.

Когда происходит испарение, то постоянным остается только масса вещества. Газ займет весь объем, который будет ему предоставлен. Здесь нельзя утверждать, что плотность постоянная величина.

Решетка чистого металла

Когда соединяются жидкости, то возможны варианты:

  1. Жидкости полностью растворяются одна в другой, так себя ведут вода и спирт. Во всем объеме концентрация веществ будет одинаковой.
  2. Жидкости расслаиваются по плотности, соединение происходит только на границе раздела. Только временно можно получать механическую смесь. Перемешав разные по свойствам жидкости. Примером является масло и вода.

Металлы образуют сплавы в жидком состоянии. Чтобы получить сплав, каждый из компонентов должен быть в жидком состоянии. У сплавов возможны явления полного растворения одного в другом. Не исключаются варианты, когда сплав будет получен только в результате интенсивного перемешивания. Качество сплава в этом случае не гарантируется, поэтому стараются не смешивать компоненты, которые не позволяют получать стабильные сплавы.

Образующиеся растворимые друг в друге вещества при застывании образуют кристаллические решетки нового типа. Определяют:

  • Гелиоцентрированные кристаллические решетки, их еще называют объёмно-центрированными. В середине находится молекула одного вещества, а вокруг располагаются еще четыре молекулы другого. Принято называть подобные решетки рыхлыми, так как в них связь между молекулами металлов слабее.
  • Гранецентрированные кристаллические решетки образуют соединения, в которых молекулы компонента располагаются на гранях. Металловеды называют подобные кристаллические сплавы плотными. В реальности плотность сплава может быть выше, чем у каждого из входящих в состав компонентов (алхимики средних веков искали варианты сплавов, при которых плотность будет соответствовать плотности золота).

Гелиоцентрированная решетка сплава

Гранецентрированная решетка сплава

Прочность металлов


Помимо способности перехода из твердого в жидкое состояние, одним из важных свойств материала является его прочность — возможность твердого тела сопротивлению разрушению и необратимым изменениям формы. Основным показателем прочности считается сопротивление возникающее при разрыве заготовки, предварительно отожженной. Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Обозначение прочности принято в МПа — Мега Паскалях.

Существуют следующие группы прочности металлов:

  • Непрочные. Их сопротивление не превышает 50МПа. К ним относят олово, свинец, мягкощелочные металлы
  • Прочные, 50−500МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
  • Высокопрочные, свыше 500МПа. Например, молибден и вольфрам.

Классификация металлов по температуре плавления

В физике переход твердого тела в жидкое состояние характерен только для веществ кристаллической структуры. Температуру плавления металлов чаще обозначают диапазоном значений, для сплавов точно определить нагрев до пограничного фазового состояния сложно. Для чистых элементов каждый градус имеет значение, особенно, если это легкоплавкие элементы,

значения не имеет. Сводная таблица показателей t обычно делится на 3 группы. Помимо легкоплавких элементов, которые максимально нагревают до +600°С, указывают тугоплавкие, выдерживающие нагрев свыше +1600°С, и среднеплавкие. В этой группе сплавы, образующие ванну расплава при температуре от +600 до 1600°С.

Легкоплавкие металлы

Легкоплавкие металлы имеют температуру плавления ниже 600°C. Это цинк, олово, висмут. Такие металлы можно расплавить в домашних условиях , разогрев их на плите, или с помощью паяльника. Легкоплавкие металлы используются в электронике и технике для соединения металлических элементов и проводов для движения электрического тока. Температура плавления олова составляет 232 градуса, а цинка – 419.

Таблица легкоплавких металлов и сплавов (до 600С о )

Название элемента Латинское обозначение Температуры
Плавления Кипения
Олово Sn 232 Со 2600 Со
Свинец Pb 327 Со 1750 Со
Цинк Zn 420 Со 907 Со
Калий K 63,6 Со 759 Со
Натрий Na 97,8 Со 883 Со
Ртуть Hg — 38,9 Со 356.73 Со
Цезий Cs 28,4 Со 667.5 Со
Висмут Bi 271,4 Со 1564 Со
Палладий Pd 327,5 Со 1749 Со
Полоний Po 254 Со 962 Со
Кадмий Cd 321,07 Со 767 Со
Рубидий Rb 39,3 Со 688 Со
Галлий Ga 29,76 Со 2204 Со
Индий In 156,6 Со 2072 Со
Таллий Tl 304 Со 1473 Со
Литий Li 18,05 Со 1342 Со

Среднеплавкие металлы

Среднеплавкие металлы начинают переходить из твердого в жидкое состояние при температуре от 600°C до 1600°C. Они используются для изготовления плит, арматур, блоков и других металлических конструкций, пригодных для строительства. К этой группе металлов относятся железо, медь, алюминий, они также входят в состав многих сплавов. Медь добавляют в сплавы драгоценных металлов, таких как золото, серебро, платина. Золото 750 пробы на 25% состоит из лигатурных металлов, в том числе и меди, которая придает ему красноватый оттенок. Температура плавления этого материала равна 1084 °C. А алюминий начинает плавиться при относительно низкой температуре, составляющей 660 градусов Цельсия. Это легкий пластичный и недорогой металл, который не окисляется и не ржавеет, поэтому широко используется при изготовлении посуды. Температура плавления железа равна 1539 градусов. Это один из самых популярных и доступных металлов, его применение распространено в строительстве и автомобильной промышленности. Но ввиду того, что железо подвергается коррозии, его нужно дополнительно обрабатывать и покрывать защитным слоем краски, олифы или не допускать попадания влаги.

Таблица среднеплавких металлов и сплавов (от 600С о до 1600С о )

Название элемента Латинское обозначение Температураы
Плавления Кипения
Алюминий Al 660 Со 2519 Со
Германий Ge 937 Со 2830 Со
Магний Mg 650 Со 1100 Со
Серебро Ag 960 Со 2180 Со
Золото Au 1063 Со 2660 Со
Медь Cu 1083 Со 2580 Со
Железо Fe 1539 Со 2900 Со
Кремний Si 1415 Со 2350 Со
Никель Ni 1455 Со 2913 Со
Барий Ba 727 Со 1897 Со
Бериллий Be 1287 Со 2471 Со
Нептуний Np 644 Со 3901,85 Со
Протактиний Pa 1572 Со 4027 Со
Плутоний Pu 640 Со 3228 Со
Актиний Ac 1051 Со 3198 Со
Кальций Ca 842 Со 1484 Со
Радий Ra 700 Со 1736,85 Со
Кобальт Co 1495 Со 2927 Со
Сурьма Sb 630,63 Со 1587 Со
Стронций Sr 777 Со 1382 Со
Уран U 1135 Со 4131 Со
Марганец Mn 1246 Со 2061 Со
Константин 1260 Со
Дуралюмин Сплав алюминия, магния, меди и марганца 650 Со
Инвар Сплав никеля и железа 1425 Со
Латунь Сплав меди и цинка 1000 Со
Нейзильбер Сплав меди, цинка и никеля 1100 Со
Нихром Сплав никеля, хрома, кремния, железа, марганца и алюминия 1400 Со
Сталь Сплав железа и углерода 1300 Со — 1500 Со
Фехраль Сплав хрома, железа, алюминия, марганца и кремния 1460 Со
Чугун Сплав железа и углерода 1100 Со — 1300 Со

Тугоплавкие металлы

Температура тугоплавких металлов выше 1600°C. Это вольфрам, титан, платина, хром и другие. Их используют в качестве источников света, машинных деталей, смазочных материалов, а также в ядерной промышленности. Из них изготавливают проволоки, высоковольтные провода и используют для расплавки других металлов с более низкой температурой плавления. Платина начинает переходить из твердого в жидкое состояние при температуре 1769 градусов, а вольфрам – при температуре 3420°C.

Ртуть – единственный металл, находящийся в жидком состоянии при обычных условиях, а именно, нормальном атмосферном давлении и средней температуре окружающей среды. Температура плавления ртути составляет минус 39°C. Этот металл и его пары являются ядовитыми, поэтому он используется только в закрытых емкостях или в лабораториях. Распространенное применение ртути – градусник для измерения температуры тела.

Температура плавления металлов таблица по возрастанию
Каждый металл и сплав имеет собственный уникальный набор физических и химических свойств, среди которых не последнее место занимает температура плавления. Сам процесс означает переход тела из одного агрегатного состояния в другое, в данном случае, из твердого кристаллического состояния в жидкое. Чтобы расплавить металл, необходимо подводить к нему тепло до достижения температуры плавления. При ней он все еще может оставаться в твердом состоянии, но при дальнейшем воздействии и повышении тепла металл начинает плавиться. Если температуру понизить, то есть отвести часть тепла, элемент затвердеет.

Самая высокая температура плавления среди металлов принадлежит вольфраму: она составляет 3422С о , самая низкая — у ртути: элемент плавится уже при — 39С о . Определить точное значение для сплавов, как правило, не представляет возможности: оно может значительно колебаться в зависимости от процентного соотношения компонентов. Их обычно записывают в виде числового промежутка.

Таблица тугоплавких металлов и сплавов (свыше 1600С о )

Название элемента Латинское обозначение Температуры
Плавления Кипения
Вольфрам W 3420 Со 5555 Со
Титан Ti 1680 Со 3300 Со
Иридий Ir 2447 Со 4428 Со
Осмий Os 3054 Со 5012 Со
Платина Pt 1769,3 Со 3825 Со
Рений Re 3186 Со 5596 Со
Хром Cr 1907 Со 2671 Со
Родий Rh 1964 Со 3695 Со
Рутений Ru 2334 Со 4150 Со
Гафний Hf 2233 Со 4603 Со
Тантал Ta 3017 Со 5458 Со
Технеций Tc 2157 Со 4265 Со
Торий Th 1750 Со 4788 Со
Ванадий V 1910 Со 3407 Со
Цирконий Zr 1855 Со 4409 Со
Ниобий Nb 2477 Со 4744 Со
Молибден Mo 2623 Со 4639 Со
Карбиды гафния 3890 Со
Карбиды ниобия 3760 Со
Карбиды титана 3150 Со
Карбиды циркония 3530 Со

    У какого металла самая высокая температура плавления


    Вольфрам – самый тугоплавкий металл, 3422 °C (6170 °F).

    Твердый, тугоплавкий, достаточно тяжелый материал светло-серого цвета, который имеет металлический блеск. Механической обработке поддается с трудом. При комнатной температуре достаточно хрупок и ломается. Ломкость металла связана с загрязнением примесями углерода и кислорода.

    Примечание! Технически, чистый металл при температуре выше четырехсот градусов по Цельсию становится очень пластичным. Демонстрирует химическую инертность, неохотно вступает в реакции с другими элементами. В природе встречается в виде таких сложных минералов, как: гюбнерит, шеелит, ферберит и вольфрамит.

    Вольфрам можно получить из руды, благодаря сложным химическим переработкам, в качестве порошка. Используя прессование и спекание, из него создают детали обычной формы и бруски.

    Вольфрам — крайне стойкий элемент к любым температурным воздействиям. По этой причине размягчить вольфрам не могли более сотни лет. Не существовало такой печи, которая смогла бы нагреться до нескольких тысяч градусов по Цельсию. Ученым удалось доказать, что это самый тугоплавкий металл. Хотя бытует мнение, что сиборгий, по некоторым теоретическим данным, имеет большую тугоплавкость, но это лишь предположение, поскольку он является радиоактивным элементом и у него небольшой срок существования.

    Сплавы металлов

    Чтобы проектировать изделия из сплавов, сначала изучают их свойства. Для изучения в небольших емкостях расплавляют изучаемые металлы в разном соотношении между собой. По итогам строят графики.

    Диаграмма сплава

    Нижняя ось представляет концентрацию компонента А с компонентом В. По вертикали рассматривают температуру. Здесь отмечают значения максимальной температуры, когда весь металл находится в расплавленном состоянии.

    При охлаждении один из компонентов начинает образовывать кристаллы. В жидком состоянии находится эвтектика – идеальное соединение металлов в сплаве.

    Металловеды выделяют особое соотношение компонентов, при котором температура плавления минимальная. Когда составляют сплавы, то стараются подбирать количество используемых веществ, чтобы получать именно эвтектоидный сплав. Его механические свойства наилучшие из возможных. Кристаллические решетки образуют идеальные гранецентрированные положения атомов.

    Изучают процесс кристаллизации путем исследования твердения образцов при охлаждении. Строят специальные графики, где наблюдают, как изменяется скорость охлаждения. Для разных сплавов имеются готовые диаграммы. Отмечая точки начала и конца кристаллизации, определяют состав сплава.

    График остывания сплава

    Сплав Вуда

    В 1860 г. американский зубной техник Барнабас Вуд искал оптимальные соотношения компонентов, чтобы изготавливать зубы для клиентов при минимальных температурах плавления. Им был найден сплав, который имеет температуру плавления всего 60,2…68,5 ⁰С. Даже в горячей воде металл легко расплавляется. В него входят:

    • олово — 12,5…12,7 %;
    • свинец — 24,5…25,0 %;
    • висмут — 49,5…50,3 %;
    • кадмий — 12,5…12,7 %.

    Сплав интересен своей низкой температурой, но практического применения так и не нашел. Внимание! Кадмий и свинец – это тяжелые металлы, контакт с ними не рекомендован. У многих людей могут происходить отравления при контакте с кадмием.

    Сплавы для пайки

    На практике многие сталкиваются с плавлением при пайке деталей. Если поверхности соединяемых материалов очищены от загрязнений и окислов, то их нетрудно спаять припоями. Принято делить припои на твердые и мягкие. Мягкие получили наибольшее распространение:

    • ПОС-15 — 278…282 °C;
    • ПОС-25 — 258…262 °C;
    • ПОС-33 — 245…249 °C;
    • ПОС-40 — 236…241 °C;
    • ПОС-61 — 181…185 °C;
    • ПОС-90 — 217…222 °C.

    Их выпускают для предприятий, изготавливающих разные радиотехнические приборы.

    Твердые припои на основе цинка, меди, серебра и висмута имеют более высокую температуру плавления:

    • ПСр-10 — 825…835 °С;
    • ПСр-12 — 780…790 °С;
    • ПСр-25 — 760…770 °С;
    • ПСр-45 — 715…721 °С;
    • ПСр-65 — 738…743 °С;
    • ПСр-70 — 778…783 °С;
    • ПМЦ-36 — 823…828 °С;
    • ПМЦ-42 — 830…837 °С;
    • ПМЦ-51 — 867…884 °С.

    Использование твердых припоев позволяет получать прочные соединения.

    Внимание! Ср означает, что в составе припоя использовано серебро. Такие сплавы обладают минимальным электрическим сопротивлением.

    Температура плавления неметаллов

    Неметаллические материалы могут быть представлены в твердом и жидком виде. Неорганические вещества представлены в табл. 4.

    Таблица 4, температура плавления неорганических неметаллов:

    Неметаллы

    На практике для пользователей наибольший интерес представляют органические материалы: полиэтилен, полипропилен, воск, парафин и другие. Температура плавления некоторых веществ показана в табл. 5.

    Таблица 5, температура плавления полимерных материалов:

    Полимеры

    Внимание! Под температурой стеклования понимают состояние, когда материал становится хрупким.

    Видео: температура плавления известных металлов.

    Оцените статью
    ( Пока оценок нет )
    админ
    Строительство, ремонт и благоустройство своими руками!
    Температура кипения и плавления металлов, температура плавления стали — таблицы
    Особенности работы с фанерой
    WordPress Themes